Match Use of Beacons to Organisations’ Goals

As we have previously mentioned, we believe too many companies chase the beacon retail marketing bandwagon when there are more compelling uses for beacons. These other uses also often have much less commercial competition. Think outside the current common usecases. Instead, invent new uses that better match organisations’ goals.

One such example is mentioned in the article Can Big Data Make for Better Exhibitions? Unlike the run of the mill, “let’s tag items and show information on them”, The Art Institute of Chicago used beacons to create heat maps, travel paths and derive dwell times to determine which parts of the museum people really want to see. The museum uses beacons for analytics. Promoting popular parts of the museum brought them an uplift in paid attendance from $14.8 million to $19.9 million. This success is based on concentrating on the museum’s real need of more income.

Start with your needs rather than the technology. Think in terms of your current challenges and work out how IT, in general, might be used to quantify the problem. Analytics will help you narrow in on specific areas that, in turn, can be improved and hence better achieve the organisation’s goals.

Physically Attractive Beacons

One mistake some projects make is to choose physically attractive beacons. Some manufacturers make their beacons look attractive to try to secure more sales. However, in use in some scenarios, the beacons can become attractive to thieves or children and become lost.

We once had a train transport customer ask “What’s your most unattractive beacon ?”

ton9108colours_small

Brightly coloured beacons can invite thieves

ton9118_smaller

Small black boxes remain anonymous

Mine Production Management Using iBeacons

There’s new research from Pukyong National University, Korea on Bluetooth Beacon-Based Mine Production Management Application to Support Ore Haulage Operations in Underground Mines.

The system uses apps and tablet PCs to provide efficient operation of an underground mine loading-transport system. Bluetooth beacons are attached to major loading points and crushing sites and a tablet PC is mounted on trucks that records the time Bluetooth beacons are seen and the location of the truck.

The research was performed in a limestone underground mine in Jeongseon, Korea. It involved 16 loading areas, 4 dumping points and 20 major transport routes.

Mine Levels and Beacons

The app outputs maps, information and voice guidance regarding location when receiving signals from Bluetooth beacons installed at the major points in the mine.

Bluetooth was used because of ease of installation, easy maintenance, no external power requirement and good battery life. The Minew i3 was used because it’s waterproof, works across a wide operating temperature, has a long range and the AA batteries are larger than coin cells so last a lot longer.

The beacons had to be set to maximum power (4 dBm) and transmit often (every 200ms) to allow the tablet PC on the fast-moving truck to receive the signal from the Bluetooth beacon. Wifi was used to transfer data to a central system.

The researchers identified how the Bluetooth system can easily cope with future changes in loading zones and expansion of the system. It provided automatic reports that previously had to be created by hand which wasn’t easy in an underground mine.

While the use is innovative, the system and architecture aren’t that different to systems employed above ground. We would have liked to see Bluetooth mesh beacons used that would have negated the need for Ethernet/WiFi connectivity in the tunnels.

New Beacon Usecases

When we started BeaconZone, our aim was to encourage new scenarios beyond the over-hyped and under-successful retail marketing scenarios. 

One of the issues with retail marketing with beacons is that it requires opt-in through the installation of an app. This is a large barrier if you are considering users who are ambivalent about using specific apps and beacons. The only way it’s usually viable is if you are a large brand who already has an app on customers’ smartphones.

The more interesting and successful uses of beacons involve scenarios that are ‘want-in’ or B2B rather than consumer ‘opt-in’. Here are just a few examples of where our beacons are being used:

  • Policing. There’s a move to what’s called evidence-based policing requiring proof of which police have visited which locations. Trials are taking place to replace paper based reporting with beacon-based automation.
  • Tours. Beacons have been purchased for use on guided walks and with museum information kiosks.
  • The Elderly. Several of our our customers are using beacons to keep track of elderly people in care homes and hospitals.
  • Smart Offices. Several of our customers are using beacons to enable the whereabouts of workers and equipment in smart offices including read time monitoring of room occupancy. We also have clients using beacons with checkin/out type applications.
  • Asset Tracking. We have two large-instrument manufacturer are using beacons for tracking assets. We also have a customer using beacons and gateways to track bicycles. Our beacons are also being used extensively at many sites that track location using Motorola TRBOnet two-way radio.
  • Events. Our long range beacons are being used outside for tracking BMX bike trials and power efficient beacons inside large arena events.
  • Gaming. Ingress players use our beacons.
  • Automotive. A large UK car manufacturer is using our beacons. Another customer, an undertaker, is using beacons with a car driving monitor app to log the time spent driving.
  • Security. Our beacons are being used in security systems at several sites including lone worker SOS scenarios.
  • Utilities. One of the largest UK water authorities is investigating the use of sensor beacons.
  • Insurance. We have customers using beacons for in-car presence detection.
  • Health. Our beacons are being used in apps/systems that help visibly impaired people find their way around buildings. Sensor beacons are being used in hospitals to monitor the temperature of refrigerated medicines.
  • Research. Our beacons have also been purchased by Google, Mozilla and many UK universities for use on their research projects.

Beacons have a multitude of further real uses waiting to be explored and exploited.

What are Beacons?

Ways to Use Beacons

Remote Team Management Using iOS as an iBeacon

S Sindhumol of Cochin University of Science and Technology, Kochi, India presents recent research into Implementation and Analysis of a Smart Team Management System using iOS Devices as iBeacon (pdf).

The key thing about this research is that it uses iOS rather than a beacon to advertise iBeacon. The system allows the entire team to determine the location of other members, perform location based tasks, receive announcements and communicate via instant chat.

iBeacon Team Management Screens

The paper contains some useful analysis of accuracy of distance measurement on distance, interference, measured power and obstructions:

Effect of iBeacon distance accuracy with obstructions
Effect of iBeacon distance accuracy with presence of another iBeacon
Effect of measured power variation on proximity and accuracy
Effect of obstructing objects on RSSI and Accuracy

On iOS it’s only possible to advertise iBeacon if the app is in foreground:

The major limitation of the proposed app is battery drainage while keeping the app active all the time in the foreground

A more practical system would have been implemented by having the users carry a separate wearable beacon. This would have allowed presence to be detected when the app isn’t in foreground and there wouldn’t have been a problem with excessive iOS battery use.

Using Beacons for Race Timing

There’s novel recent research on City Marathon Active Timing System Using Bluetooth Low Energy Technology by Chun-I Sun, Jung-Tang Huang, Shih-Chi Weng and Meng-Fan Chien of Taiwan.

The authors discuss the use of beacons vs RFID and create a system using Received Signal Strength Indicator RSSI and gateways connected to detector mats:

Beacons are carried by athletes. The gateways sync their times via NTP and send data up to a MongoDB database:

An accuracy of ±156 ms was achieved which compares well to the nearest second used to generally record times and resolution accuracy of 0.1s for commercial transponder timing systems.