The Status of Manufacturing and the 4th Industrial Revolution (4IR)

There’s an article in The Manufacturer magazine on “Manufacturing:the numbers” that highlights some numbers from the Hennik Research’s Annual Manufacturing Report.

In practice, we are finding many organisations are struggling to develop skills, business processes and organisational willpower to implement 4IR. There’s a relatively slow pace in many industries, driven down by the uncertainties of Brexit, Europe and International trading tensions.

Nevertheless, we believe that once these political issues start to play out, the more forward-thinking manufacturers will realise they have to revolutionise their processes in order to compete in an market with complex labour availability and tighter margins due to tariffs. Manufacturers that are able to harness 4IR effectively will be the ones that will be able to differentiate themselves, while the laggards will find themselves more and more at a disadvantage.

Read about Sensing for Industry and IoT
Read about Machine Learning

Bluetooth IoT Sensors

There’s a type of beacon that doesn’t send out iBeacon or Eddystone advertising. Instead, it sends out standard Bluetooth 4.0 advertising containing sensor values. This means the data can be picked up via apps, gateways, Raspberry Pis or other devices that can see Bluetooth advertising.

An example of this is the INGICS iBS01 range of beacons.

The round bit in the middle is a button that can be pressed. Here’s an example for the data from the iBS01T temperature/humidity sensor:

Additionally, the ‘event’ data gives the state of the button press.

Read more about Using Bluetooth Wireless Sensors

Sensor Beacons

Bluetooth Sensor Tags

Bluetooth sensor tags and sensor beacons are essentially the same thing. The terminology of tags vs beacons stems from how they are used. If the devices are fixed, they tend to be called beacons and if they are placed on assets or people they tend to be called tags because they are tagging things and people. However, the terminology is interchangeable, irrespective of the use.

The use of the term tags also comes from the use in RFID, barcode and UWB devices that can also be used to uniquely identify devices.

Bluetooth sensors can be used in two ways, either via connection-less advertising or having another  Bluetooth device connect and examine values. This is explained further in our article on Using Bluetooth Wireless Sensors.

Tagging implies locating. However unlike other technologies, devices can do a lot more than just locating and can detect movement (accelerometer), temperature, humidity, air pressure, light and magnetism (hall effect), proximity, heart rate and fall detection.

Read more about:
Using Beacons, iBeacons for Real-time Locating Systems (RTLS)

Beacon Proximity and Sensing for the Internet of Things (IoT)

New BeaconServer™ Software

For a while now, we have had enquiries from companies interested in our BeaconRTLS but not wanting the whole thing. In some scenarios such as IoT, machine learning and even locating you just want to collect data and not visualise it on maps/plans. Also, our BeaconRTLS™ was found to be overkill for small scale projects that don’t need the extremely high throughput.

Today, we have released BeaconServer™. It’s a ready-made system to collect multi-location beacon advertising data and make it available to other people, systems and apps. It allows you to collect, save and query beacon data without any coding.

BeaconServer™ comes in the form of a self install. Please see the BeaconServer web site  for more information.

Devices That Can See Beacons

When people think about beacons they often imagine them being detected in smartphone apps. This post explores other devices that can also see beacons allowing for different interaction possibilities and new scenarios.

Apps – Apps aren’t limited to just smartphone apps. You can run apps on TV boxes that run Android. Just make sure they have Bluetooth 4.3 or later.

GatewaysGateways are small single pupose devices that look for beacons and send the information on via MQTT or REST (HTTP) to any server. This allows web servers to see beacons.

Desktops and Laptops – PC/Mac devices with built-in Bluetooth or dongles can see beacons.

Walky Talkies – Motorola manufacture the MOTOTRBO range of digital radios that can detect iBeacons and show their location on a map.

Raspberry Pi – This has Bluetooth and can be used to detect beacons.

AndroidThings – This special IOT version of Android can run apps that detect beacons and store and/or forward information to other devices.

ArduinoArduino boards often have Bluetooth and can do things based on the presence of beacons.

Pixl.js – The manufacturer of the Puck.js also supplies a device with a screen that can detect and interact with beacons.

Single Board Computers (SBC) have an advantage over gateways in that data can be cached locally when there isn’t an Internet connection. They can also make decisions locally and send out alerts directly rather than having to rely on a server. This is so called ‘IoT Edge’ computing.

Detecting Temperature With Beacons

Some sensor beacons can be used to monitor temperature. The first thing to consider when comparing temperature beacons is whether they have a dedicated hardware temperature sensor. Some beacons have a temperature sensor inside the main chip (System on a Chip – SoC) that’s less accurate and has less precision. The sensor is mainly there to give an indication of the chip temperature, not the ambient (outside the beacon) temperature. Most beacons only transmit for the order of 1ms every 10 to 5 seconds and enter a very low power state the remainder of the time. This means they not only use low power but don’t significantly heat the SoC. This means the SoC roughly tracks the outside temperature.

In our sensor beacon listings, when we say a beacon has a temperature sensing it has a separate hardware sensor, usually the Sensirion SHT20, providing more accuracy and precision than the sensor in a SoC. Some of our beacons, such as the Minew i3 and i7 have an internal SoC temperature sensor that’s readable but we don’t classify that as a sensor beacon.

The next thing to consider is the casing. In order to quickly track ambient temperature, the casing needs to be open somewhere and usually have a hole. Beacons that say they are waterproof and have temperature sensing won’t track ambient temperature well.

We have had customers use temperature sensing beacons in scientific situations and where they need to periodically calibrate sensing equipment. How do you calibrate temperature sensor beacons? The SHT20 is has a long term drift of only <0.04 deg C/year (the humidity reading vaies difts by <0.5%RH/year) so it doesn’t need calibration for most situations. However, if you need better than this, or check calibration, you will need to periodically calibrate in the software of the device (usually an app) that receives the beacon sensor data.

Detecting Movement With Beacons

There are various types of movement that can be detected by beacons:

Movement between zones – This is large scale movement between, for example, rooms. This relies on devices detecting the beacons and relaying the information to software that, stores historical location, plots positions and creates alerts. This is the basis for Real Time Locating Systems (RTLS).

Movement from stationary – This is when something goes from being stationary to moving. There are two ways to do this. You can look at the xyz from a beacon accelerometer to determine it has started moving. Alternatively, some beacons such as the iB003 have motion triggered advertising so you will only see the beacon when it moves.

Falling – Again you can look at the xyz from a beacon accelerometer to determine a beacon is falling. Alternatively, you can use a more intelligent beacon such as the iBS01G that does this for you and just gives indications of a start/during/end of a fall as values in the advertising data.

Vibration – The xyz can be used to determine the degree of the movement and hence vibration.

Posture detection – This is more advanced analysis of the xyz that works out, for example, if someone is walking, running, sitting or standing. Another use is the analysis of sports (e.g. golf, squash, tennis, badminton) swings to determine the type of movement and score the movement.

There also scenarios outside the above that are also possible. For example, we had a customer wanting to know if their forklift truck hadn’t been moving for 2 minutes so as to make best use of it.

View our sensor beacons

Have Us Devise a Solution for Your Company

IoT Sensing Without Soldering

There are a lot of ways of doing sensing that mostly include development boards, wires and soldering. Even if you use prototyping or breadboards, your final solution is rarely ready for real use or production without then creating a custom electronics solution.

Sensor beacons provide for IoT sensing where all of the developed solution can be in software. The beacons send data via Bluetooth preventing the need for wires and soldering, even in production solutions. All you need is the receiving software in an app, laptop, desktop or other computer where you can receive data and if necessary send it on to servers.

What’s more, the use of low power Bluetooth allows you to place the sensors in locations where there’s no mains power. Batteries in the beacons can last 5 years or more depending on the sensor sampling frequency.

Read more:

Beacon Proximity and Sensing for the Internet of Things (IoT)