Reducing Costs with Predictive Maintenance

The Nordic blog has an informative post on How IoT-Based Predictive Maintenance Can Reduce Costs. It explains how connected sensors can save maintenance costs through reduced downtime. The post provides some examples from the power industry and explains how the same techniques can be used in the tools, retail, distribution and physical infrastructure industries.

As the post mentions, the challenge is how to scale this up. We are told IoT is the solution. Here at BeaconZone, we don’t believe IoT is always the solution, especially where there’s a requirement for higher sensor sampling frequencies. There’s too much data, too much data transfer and too much server processing. It really doesn’t scale. Apart from the waste and cost of these resources, the latency of triggering events based on the data is too high. Instead, look to so called ‘edge’ or ‘fog’ computing where more processing is done nearer the sensors and only pertinent data is sent to other systems.

Need more help? Consider a Feasibility Study.

IoT Sensors

Bluetooth LE provides a compelling way of implementing IoT sensing because:

  • The sensors are usually already cased and certified rather than experimentor, bare printed circuit boards.
  • Being wireless, they can be placed in remote areas that have no power.
  • Being Bluetooth LE, they can last on battery power for years.
  • Again, being Bluetooth LE, they are suitable for use in noisy electrical areas.
  • They are commodity rather than proprietary items and hence very low cost compared to legacy industrial sensors.
  • No soldering or wiring up is required.
  • They are easy to interface, for example, to Bluetooth gateways and smartphones.
  • They can participate in Bluetooth Mesh to communicate over large areas.
  • They detect a variety of quantities such as movement (accelerometer), temperature, humidity, air pressure, light and magnetism (hall effect), proximity, heart rate, fall detection, smoke, gas and water leak.
  • They are proven. For example, some of our temperature sensors are used to monitor airline cargo.
  • Software exists, such as BeaconServer™ such that you don’t need to write any software.
INGICS Movement Sensor

Need help? Consider a Feasibility Study.

Learn about the 4th Industrial Revolution (4IR), Industry 4.0

The 4th Industrial Revolution (4IR), also known as Industry 4.0, is the use of technology to improve operational efficiency, increase throughput, minimise downtime, improve quality and lower costs. We have an article that explains how beacons are part of 4IR.

There’s a lot more to 4IR than tracking items and analysing data. It also includes areas such as automation, robotics, cyber security and 3D printing. There’s a free online Industry 4.0 Magazine that can help you get up to speed.

It’s also possible to view recent back issues.

Read about Asset Tracking for Manufacturers

iGS02E without PoE

We now have the INGICS iGS02E Bluetooth to Ethernet gateway (without PoE) in stock.

This small device looks for Bluetooth LE devices and sends their advertising on to a server via TCP, HTTP(S) or MQTT including AWS IoT. If you use with sensor beacons, this provides a quick and easy way to provide for IoT sensing.

Compatible with BeaconServer™ and BeaconRTLS™.

We also stock the INGICS PoE splitter.

The Status of Manufacturing and the 4th Industrial Revolution (4IR)

There’s an article in The Manufacturer magazine on “Manufacturing:the numbers” that highlights some numbers from the Hennik Research’s Annual Manufacturing Report.

In practice, we are finding many organisations are struggling to develop skills, business processes and organisational willpower to implement 4IR. There’s a relatively slow pace in many industries, driven down by the uncertainties of Brexit, Europe and International trading tensions.

Nevertheless, we believe that once these political issues start to play out, the more forward-thinking manufacturers will realise they have to revolutionise their processes in order to compete in an market with complex labour availability and tighter margins due to tariffs. Manufacturers that are able to harness 4IR effectively will be the ones that will be able to differentiate themselves, while the laggards will find themselves more and more at a disadvantage.

Read about Sensing for Industry and IoT
Read about Machine Learning

Beacons and The 4th Industrial Revolution

We previously wrote about how beacons are part of Industry 4.0 and how implementations need to achieve a return on investment. Industry 4.0 is also being called ‘The 4th Industrial Revolution’ (4IR).

Oracle and the EEF have an excellent free, recent, paper (registration NOT required) on The 4th Industrial Revolution: A Primer for Manufacturers. It concludes 4IR isn’t hype and should be taken seriously. Here’s how manufacturers themselves see 4IR:

Manufacturing is undergoing a transformation. The report says it’s all about data connectivity. However, the report falls short on explaining how data can be sensed and captured. Sensor beacons, gateways and beacon platforms such as our BeaconRTLS are one such solution that helps fill that gap.

Read more about beacons and the IoT

IoT Return on Investment for Industry

Mr Beacon has an interesting new interview with Sam Jha, Chief Business Officer of Alpha Ori. Alpha Ori work with the shipping industry that’s still lacking the productivity gains many other industries have experienced through the use of IT. While the interview talks about shipping, it’s equally applicable to all industries.

In the shipping industry, IoT can be used to measure ships’ systems. This can produce thousands of data points per second that can be analysed using ‘big data’ techniques. The key is to identify insights that have value in that they can impact the areas where there are large costs. An example is maintaining up time and using sensing to estimate the life remaining on machinery, detect when things are starting to fail and replace preventative maintenance with predictive and prescriptive maintenance. Better maintained ships can also have the side affect of reducing other costs. Smart ships have lower insurance risk profiles and can hence save insurance costs.

The key message is one of identifying areas where there are large costs and using IT to optimise those areas. In shipping or any industry this usually involves sensing on machinery and systems to maintain optimum up time. It also involves detecting when to perform in-time maintenance to get the maximum life from expensive machinery. Beacons, particularly sensor beacons, provide the sensing part and are especially suitable for areas that don’t have power, lack cabling or are difficult to monitor manually due to accessibility.

Read about beacons and the IoT