Using Bluetooth Beacons to Measure Gait Speed

There’s recent research into using Bluetooth beacons to measure human gait speed. The ability to walk can be used as a core indicator of health in aging and disease. For example, it can enable early detection of cognitive diseases such as dementia or Alzheimer’s disease.

Researchers at Universitat Jaume I and University of Extremadura, Spain, have created a new dataset. In their paper BLE-GSpeed: A New BLE-Based Dataset to Estimate User Gait Speed (pdf) they describe how they collected the data.

The database is freely available and includes:

  • mac: The MAC address of the detected beacon.
  • rssi: The RSSI value obtained for the beacon.
  • device: A four-character descriptor for the smartwatch that performed the scan.
  • timestamp: The time stamp at which the scan was received.
  • user: The id of the user that was performing the experiment.
  • direction: A number (0 or 1) indicating the direction of the walk.
  • walk_id: A number that identifies each walk.
  • speed: The actual speed of the user, in $m/s$.

It database contains RSSI measurements from different wearable devices and different BLE beacons, corresponding to 382 walks performed by 13 actors. The open source code used is available on GitHub.

Using Bluetooth Beacons for Epidemic Risk Mitigation

There’s innovative new research by Max Planck Institute for Security and Privacy on Listening to Bluetooth Beacons for Epidemic Risk Mitigation.

Solutions usually detect and store contact events between Bluetooth devices that has poor interoperability when applied to smartphones. Adoption rates are also low due to privacy concerns and resultant systems depend on subsequent manual contact tracing.

Instead, a new architecture is used that comprises standard beacons carried by users and detectors placed in strategic locations where infection clusters are most likely to originate. [This is similar to the architecture used for IoT sensing using gateways.]

The system helps control disease spread at lower adoption rates. It also provides significantly higher sensitivity and specificity than existing app-based systems.

Read about Beacons for Workplace Social Distancing and Contact Tracing

Dementia Anti-Wandering Using Beacons

The Hong Kong Multimedia Technology Research Center (MTREC) has an interesting project that implements a dementia anti-wandering system using iBeacons.

A paper (pdf) explains how it uses a novel multi-hop system to track targets using mobile sensors. The multi-hop approach extends the sensing area and reduces the deployment cost.

iBeacon Cooperative Tracking

The system uses a particle filter which analyses the temporal and spatial information of the targets to achieve 4.37m and 9.46m tracking error in a campus and a shopping mall respectively.

Read about Beacons in Life Sciences

Bluetooth Sensors for Analysing Sports

Nordic Semiconductor has a recent article by Petter Myhre Jun on Wireless Solutions Take Sports Tracking to New Level.

Bluetooth Sports Sensor
SpoSeNs 2.0 Professional Wearable

Petter talks about how location and movement sensors can be used to take athletic measurements for monitoring, analysis and performance improvement. He describes the SpoSeNs 2.0 Professional Wearable built round Nordic Semiconductor’s nRF52840 SoC.

However, many types of sports measurement can be implemented using off the shelf sensors. Standard beacons can be used for locating and Bluetooth sensors with accelerometers used for finer measurement of movement.

It’s also possible to measure heart rate that can lead into health related applications. We previously worked on Ultimate Sport Service’s heart rate tracking project. Ultimate Sport provide running race timing solutions. The heart rate tracking project allows Ultimate Sport to collect and display the real-time heart rates of a group of runners.

BeaconZone was a key part in succeeding with our custom heart rate tracking project. From assessing potential challenges in the Bluetooth framework on iOS and Android to evaluating hardware possibilities, we got valuable and accurate advice. The project was delivered on time and we are confident we will be working together again in the future.

Ultimate Sport Service Aps, Denmark

Read about Beaconzone Solutions

Bluetooth in Healthcare

The Bluetooth blog has a recent post on 4 Reasons to Use Bluetooth in Your Healthcare Facility. It explains some advantages of Bluetooth and mentions some uses within healthcare.

Bluetooth can be used as a way of connecting wearables and equipment to other devices. When equipment and people are Bluetooth-enabled, asset tracking and wayfinding become possible. Staff can quickly locate valuable hospital assets and patients in need for urgent care.

Another reason for using Bluetooth is reliability. The article mentions Bluetooth’s adaptive frequency hopping (AFH) that makes communication more reliable in noisy wireless environments. You can read more about the technical aspects in our post on Bluetooth LE on the Factory Floor.

A further reason for using Bluetooth, particularly Bluetooth LE, is low power. Stand-alone devices can work on coin-cell batteries for many years.

The final reason given for using Bluetooth is the ability to create larger site-wide networks using Bluetooth mesh. Mesh can be used for control, monitoring and automation systems without the need for WiFi that can be unreliable and congested in hospitals.

For a further look at usecases, see the post on RTLS in Healthcare.

RTLS in Healthcare

There’s a new Mr Beacon video interview with HT Snowday, VP of Innovation and Technology Development at Midmark RTLS. Midmark and HT are formerly of Versus Technology who were acquired by Midmark in Aug 2018.

Midmark RTLS uses a combination of infra-red, 433Mhhz RF, WiFi and Bluetooth to provide tracking of healthcare assets, care givers and patients. It allows medical equipment to be located quickly, key things such as IV pumps to be effectively distributed (par levelling) and the location of care staff and patients to be controlled and monitored. The Bluetooth part of Midmark RTLS is used more for wayfinding using powered, static beacons to mark locations. Systems also allow for health workflow processes including self-rooming to reduce waiting and queuing for care.

Healthcare is increasingly being provided at outpatient rather than inpatient treatment. This is leading to more clinics and treatments centres and the need for technical sophistication to efficiently process patients.

No mention was given to other crucial healthcare usecases we have come across at BeaconZone such as tracking (and temperature) of valuable medicines, tracking porters, wheelchairs and wayfinding from the hospital limits to reception areas.

Read about Beacons For Life Sciences

Using iBeacon to Assess Elderly Frailty

There’s a research paper by Thomas Tegou, Ilias Kalamaras, Markos Tsipouras, Nikolaos Giannakeas, Kostantinos Votis and Dimitrios Tzovaras of Information Technologies Institute, Greece on A Low-Cost Indoor Activity Monitoring System for Detecting Frailty in Older Adults.

The paper describes a room-level accuracy indoor localization system, based on Bluetooth RSSI, to assess the frailty in older people.

The implementation used smartphones as detectors:

The researchers identified features to classify degrees of movement between rooms:

The system was able to determine rooms to an accuracy above 93%. The results showed subjects with frailty had distinctive movement patterns that could be identified with high accuracy of 98%.

Read about Beacon Proximity and Sensing for the Internet of Things (IoT)

Using Beacons in Healthcare

Russ Sharer, Vice-President of Global Marketing for Fulham, a manufacturer of energy-efficient lighting sub-systems has written an article in Health Estate Journal (pdf) on the use of iBeacons in healthcare.

Russ says it’s often difficult to find life saving equipment in hospitals and many organisations have to compensate by purchasing more equipment than they need. However, in use, equipment still gets misplaced, usually just at the critical time it is needed. He explains how the use of Bluetooth beacons and mesh can solve this problem. The article provides a great introduction to iBeacons and some issues such as the affect of frequency of transmission on battery life.

While the article mentions Bluetooth Mesh and iBeacons, these specific technologies don’t always have to be used. Gateways can be used instead of mesh to allow greater throughput of data. Also, any beacons, not just iBeacons, can be used as it’s usually the MAC address of the beacon that’s used for identification purposes. Using sensor beacons allows further scenarios, for example, monitoring the temperature of expensive medicines.

There are also many more scenarios for the use of beacons in healthcare than are mentioned in the article. Our beacons are being using to track hundreds of dementia patients. We have also been involved in a project to use beacons for navigation in large hospitals. Once there’s a network of beacons in a hospital, it’s possible to add lots of widely varying solutions.

Read About Beacons in Life Sciences

Wearable Tech for Dementia Patients

Dexigner has a new article on how Mettle and their use of beacons to monitor Dementia Patients. When the patient wanders out of sight the signal is lost and the app alerts the carer by notification and vibration.

mettle

While it’s an interesting piece of design, the companion app is very similar to the usual beacon-based ‘lost luggage’ type of app. In fact, many standard beacons are wearable.

There are also many more health applications waiting to be discovered that make use of the accelerometer, temperature sensor and the buzzer found in some beacons.