Do Bluetooth Beacons Need a Licence to Use?

Bluetooth Low Energy (BLE) technology does not require a licence for use, making it a popular choice for various devices including smartwatches, fitness trackers, laptops, PCs, smartphones and industrial equipment.

BLE operates in the 2.4 GHz ISM (Industrial Scientific Medical) band, which is licence-free in most countries. This means that anyone can use this frequency range without obtaining a specific permit which has contributed to the widespread adoption of BLE technology. BLE is an open standard managed by the Bluetooth Special Interest Group (SIG), which allows for broad implementation across various devices.

Can an iBeacon Send Users to a Website?

The short answer is no, iBeacons cannot directly send users to a website. iBeacons do not have the capability to push content or URLs to devices automatically. Instead, they rely on compatible apps to detect their presence and take appropriate actions which can include sending the user to a web site.

There used to be a mechanism in Android that used the Eddystone-URL advertising format but this has since been discontinued by Google.

How to Calibrate Temperature Sensor Beacons?

We have several clients using the temperature/humidity sensor beacons in industrial situations. A question we have had is how is the temperature/humidity calibrated? For scenarios that require monitored temperature/humidity, it’s often necessary to show the readings have been calibrated over time.

M52-SA Sensor beacon

Most sensor beacons don’t have a calibration certificate. The long term drift of the sensor is <0.04C/yr and <0.5 RH/yr so in most applications it doesn’t usually need calibration. If you need accuracy better than this you will usually need to calibrate in the software of the phone/device that receives the beacon signal. That is, you will need to periodically measure the real temperature/humidity using another calibrated instrument and apply any offset to the read values.

S5 Sensor beacon

Another option is to use the one beacon, the S5, that does have a temperature/humidity calibration certificate.

Beacons for Spying?

There’s lots of information on Bluetooth beacon security, Bluetooth attacks and using beacons to track individual user data but these are known, small risks we might expect. What about unknown things such as espionage?

Recently, a prospective customer posed a critical question: How can we ensure that purchased beacons are not engaging in activities beyond their intended purpose, such as eavesdropping or transmitting sensitive information? This question becomes even more pertinent when considering beacons manufactured overseas that might be deployed in sensitive locations.

Typically, a single SoC chip on the beacon’s simple Printed Circuit Board (PCB) is responsible for all operations. Upon examination, if there are no additional, unexpected, chips on the PCB, it limits the beacon’s ability to perform unexpected tasks. If the hardware is not compromised, the only factor to consider is the standard, usually Nordic Semiconductor, System on Chip (SoC) used in the beacons. This means that any potential spying would likely be restricted to software in the SoC rather than hardware modifications.

Let’s assume beacons can only exploit the capabilities that the standard SoC chip provides. These usually include Bluetooth, ANT, 802.15.4 and other proprietary and non-proprietary 2.4GHz protocols. Crucially, beacons are designed primarily to send signals rather than receive them. They transmit signals every millisecond, typically every 200ms to 1000ms, to maintain low battery consumption. For a beacon to listen or scan for information, it would require significantly more power, thus drastically reducing battery life. Similarly, relaying, perhaps via covert channels, any gathered information would also deplete the battery swiftly. Therefore, any huge deviation from the expected battery life could be a tell-tale sign of unauthorised activities.

Given that beacons usually only send data, they cannot capture sound or video without additional, noticeable components. When they are listening using the protocols they are designed for, the information they could gather would be limited and lack context, such as identifying what they have seen or the specific location.

While the theoretical possibility of beacons being used for spying exists, it is easily detectable due to the easily examined, simple hardware, limited capabilities of the SoC and the significant power requirements for any additional activities. By understanding the simplicity, limitations and functionalities of these devices, businesses can better safeguard against potential espionage.

Read about our consultancy for more advice

What is the Beacon With the Shortest Range?

A short-range beacon is useful in scenarios where precise proximity detection is crucial. For instance, in retail environments, it can trigger notifications when a customer is near a till or near a specific product. In museums, it can provide detailed information about an exhibit when a visitor is directly in front of it. Short-range beacons are also valuable for security purposes, ensuring access control in restricted areas by detecting when someone is within a specific, confined space.

The range of a beacon can be adjusted by altering its transmission power, known as Tx Power. Tx Power determines the strength of the signal the beacon emits. By reducing the Tx Power, any beacon’s signal strength can be decreased, effectively shortening its range.

Lowering the Tx Power to reduce the beacon’s range significantly improves battery life. Since the beacon is emitting a weaker signal, it consumes less power. This efficiency is beneficial for maintaining the beacon’s operation over longer periods without frequent battery replacements or recharges.

Beacons can generally achieve a minimum range of 2 to 3 metres. However, it’s important to note that the range can fluctuate over time due to the nature of radio signals, which can be affected by environmental factors such as walls, interference from other electronic devices and physical obstructions.

In addition to adjusting the Tx Power, the range can be fine-tuned by using the Received Signal Strength Indicator (RSSI) at the receiving end. RSSI measures the power level of the received signal, allowing devices such as smartphones (iOS and Android) or computers (like Raspberry Pi) to determine how close they are to the beacon. By setting thresholds for RSSI values in the receiving program code, you can define more precise proximity zones, ensuring that actions are triggered only when the device is within the desired range.

What is the Best Beacon Compatible With Our HR System?

The answer to this question is similar to Which Beacons are the Most Compatible (with iOS and Android)? All beacons transmit to Bluetooth standards and use similar, certified, components which means there are no problems with compatibility or ‘best’ beacon for compatibility with an HR system.

Instead, we find the challenges usually lie in setup and getting the HR system to recognise the beacon UUID. Most systems use iBeacon advertising that uses a UUID, major and minor to uniquely identify the beacon. The UUID looks something like 3ce2ef69-4414-469d-9d55-3ec7fcc38520. Some HR systems use upper case for the hexadecimal digits that are letters, some use lower case. Some omit the dashes (-) and some use colons instead. Read your HR user guide to determine the exact format otherwise the beacon won’t be recognised.

What are Bluetooth Tunnel Beacons?

This is a feature in Google Maps on Android that improves navigation through tunnels, addressing the long-standing challenge of maintaining accurate location tracking when GPS signals falter.

Historically, tunnels have posed a significant challenge for digital navigation tools, primarily due to the inability of GPS signals to penetrate the thick layers of earth and concrete. This often results in a loss of real-time location tracking. However, Google Maps has improved the situation through the introduction of Bluetooth tunnel beacons, a feature that uses the power of Bluetooth technology to offer an unprecedented level of location accuracy in subterranean environments.

Bluetooth tunnel beacons operate by emitting signals that are received by a user’s smartphone, providing precise location data to the device. This feature, using technology already implemented by Google-owned Waze utilises these signals in conjunction with the device’s mobile connectivity. Together, they deliver navigation assistance, mirroring the capabilities of a traditional GPS connection.

The feature appears under Settings > Navigation Settings and under the ‘Driving Options’ section near the bottom. The feature is disabled by default, and is described as: ‘Scan for Bluetooth tunnel beacons to improve location accuracy in tunnels’.

The effectiveness of Bluetooth tunnel beacons, however, depends on the presence of these beacons within tunnels. Waze has already installed these beacons in several major cities around the world, such as New York City, Chicago, Boston, Paris, Rio de Janeiro and Brussels.

Why is There a Bluetooth Beacon in My Hotel Room?

The presence of a Bluetooth beacon in your hotel room is likely part of the hotel’s efforts to enhance guest experience and operational efficiency. These beacons are used for various purposes.

These beacons can help in providing location-based services. For example, if the hotel has a mobile app, it might send you notifications about special offers or events based on your location within the hotel.

In larger hotels, these beacons can assist guests in navigating to facilities like the gym, restaurant, or conference rooms. They can help the hotel staff in monitoring and managing room status, like whether the room is occupied or needs cleaning, thus improving efficiency.

In the context of health and safety, especially post-COVID-19, such technology can facilitate contactless check-ins and check-outs, or even contactless room service. Hotels may use these beacons to collect data on guest movements and preferences to improve their services and tailor their offerings.

How Much is iBeacon?

There are different beacon models that contain different battery sizes that mainly determine the beacon cost. Beacons with small coin cell batteries cost of the order of €10, $10, or £10. Larger battery beacons with sensors cost up to €30, $30, or £30 or more.

It’s possible to get lower cost beacons direct from China but hidden shipping, money transfer, import duty, import tax and carrier import disbursements inflate the cost. Most brands work ‘just in time’, only manufacturing once they have received payment thus delaying order by weeks or months during holiday periods. Furthermore, they all use freight forwarders, through Hong Kong, that take up to an extra 10 days.

Why is There Variation of RSSI?

We sometimes get asked whether a beacon is faulty because a customer is seeing a lot of fluctuation in the Received Signal Strength Indicator (RSSI) values, even in a seemingly stable environment and with no change in distance. The short answer is: this is normal. The reason for this lies in the complex nature of radio signals and how they interact with the environment.

Radio signals are susceptible to a variety of factors that can affect their received strength. When a beacon sends out a signal, it doesn’t just travel in a straight line to the receiver. Instead, it disperses in multiple directions and can bounce off walls, floors and other objects.

Reflections can cause the signal to take different paths before reaching the receiver. Each path can have a different length and, therefore, a different time delay. This results in a phenomenon known as multipath fading, where multiple copies of the signal arrive at the receiver at slightly different times. This can cause fluctuations in the RSSI values you observe.

While reflections are a primary cause of RSSI fluctuation, they are not the only one. Other physical changes in the environment can also contribute to this variability. For example, the presence of people moving around can affect the signal, as the human body is mostly water and can absorb radio frequencies. Similarly, other electronic devices emitting radio frequencies can interfere with the signal, causing further fluctuations.

To get a more accurate understanding of the signal strength, it’s advisable not to rely on a single RSSI value. Instead, you should look at many RSSI values over a period of time and calculate the average. This approach helps to mitigate the effects of temporary fluctuations and provides a more stable and reliable measure of signal strength.

Many people, particularly researchers, have looked into the intricacies of RSSI and its variability. Various algorithms and methods have been developed to improve the accuracy of RSSI-based distance estimation and location tracking. For those interested in a deeper understanding or potential solutions to this issue, we recommend looking at the articles tagged RSSI and RSSIStability on our blog.