When working with Bluetooth beacons and/or gateways and looking at raw Bluetooth data it can often become confusing which device is which. When setting up beacons using manufacturers’ apps, it’s a common occurrence for our customers to mistakenly connect to smartphones or fitness trackers rather than a beacon and wonder why the connection doesn’t work.
RaMBLE is a useful Android app that helps decode the Bluetooth devices around you. It attempts to classify devices so you can identify them:
The scanning runs in background and also logs advertising so that the data can be exported for analysis.
Today’s Bluetooth devices use advertising, GATT connection and mesh. Advertising occurs over three channels to reduce the affects of wireless interference. When more than one device advertises at the same time, the data is lost. However, advertising takes of the order of 1ms so the chance of collision is usually small.
In contrast, BlueFlood uses concurrent transmissions (CT) that purposely synchronise transmissions such that if colliding packets are tightly synchronised and have the same contents, the resulting signal might be distorted, but highly probable that they do not destruct each other. This is used with the Glossy flooding protocol and 40 rather than 3 advertising channels.
CT-based protocols achieve enormous performance gains in terms of end-to-end reliability, latency and energy consumption even under harsh interference conditions
Concurrent transmissions are challenging using Bluetooth because transmissions need to be synchronised down to 250ns. Nevertheless, the researchers show this is possible using standard Bluetooth PHY and commercial Nordic SoCs. They achieved an end-to-end loss rate below 1% and managed to receive the signals on a standard smartphone. While the mechanism was fragile it was found to be viable.
Silicon Labs is a Bluetooth module manufacturer and solutions provider. Over the years they have created a large number of useful technical notes. They have just created a master list that allows easier access to the notes. Here are some that more general, less proprietary and not specific to Silicon Labs’ modules:
Asahi Kasei Microdevices Corporation has announced the AK1595. As with the previously mentioned AK1594, it works without a System on a Chip and provides Bluetooth transmission using very low power.
Instead of setting the advertising via EEPROM programming like the AK1594, the AK1595 is controlled via UART or I2C making it suitable for variable data transmission scenarios.
We expect the AK1595 will be particularly useful for energy harvested applications.
We have a new article Using Bluetooth Low Energy (LE). It explains how beacons use Bluetooth LE. We provide a high level description how other Bluetooth LE devices such as smartphones, gateways and single board computers communicate with Bluetooth devices such as beacons.
The paper looks into the affect of radio frequency (RF) noise on connection based Bluetooth LE communication and provides a mechanism that significantly improves the time taken to send a message in noisy environments. To be clear, beacon-related scenarios rarely use GATT connection based communication and instead use connection-less communication repeatedly broadcasting short packets on 3 advertisement channels (37, 38, and 39). Connection tends to be used only to set up beacon parameters or for more advanced scenarios where a device such as a smartphone connects to the beacon for bidirectional data transfer to get real time data, for example, more timely motion detection.
The authors distinguish their research as experimentally derived as opposed to analytic (just using calculations). They show how the Bluetooth Adaptive Frequency Hopping (AFH) algorithm allows Bluetooth devices to blacklist interfered channels and re-transmit packets on different frequencies until interference is avoided.
The paper shows how the AFH algorithm mitigates the effects of Wi-Fi interference near a Bluetooth master by blacklisting channels. An interesting insight is that the master is unable to detect Wi-Fi interference near the Bluetooth slave and is unable to adapt resulting in UDP messages being significantly delayed.
“Our experiments show that BLE connections are eventually able to successfully transmit all data packets, even under heavy Wi-Fi or Bluetooth interference”
The authors demonstrate that by lowering the connection interval in response to changes in the link quality, an application can reduced the average number of packets delayed from 6.18% to 0.54%.
Bluetooth beacons use Bluetooth LE, a low power version of Bluetooth to repeatedly send out a short amount of data typically up to 50m but in some cases hundreds of metres. The data usually includes an identifier in various standard formats such as iBeacon or Eddystone. It can also include sensor data.
The beacon advertising can be picked up by other Bluetooth LE devices such as smartphones, WiFi gateways to send to a server and single board computers such as the Raspberry Pi.
The key features are:
Low power and hence can work for up to years on battery power
Interoperability with a large number of other Bluetooth LE devices
The Bluetooth SIG, who create the specifications for Bluetooth, have a new Bluetooth Range Estimator that takes into account the environment, transmit power, antenna gain and received gain to provide an estimated range.
In terms of beacons, the range usually relates to how they are powered. The beacons with smaller CR2032 batteries tend to be designed for ranges up 50m. Larger CR2477 powered beacons usually reach about 100m. AA battery beacons or those with power amplifers reach hundreds of metres. and some USB beacons can reach up to 4Km. These ranges are outdoors. Indoors, there’s often radio reflections and blocking that reduce range. Beacon orientation can also affect range.
When testing beacons and Bluetooth LE, nRF Connect is usually sufficient. However, if you need deeper analysis of Bluetooth you need to use a packet sniffer.
NCC Group has a new open source sniffer for Bluetooth 5 that also works with Bluetooth 4.x. You need to run the software on a Texas Instruments (TI) CC26x2 board.
The paper explains mesh topologies and routing protocols. It describes Bluetooth:
“BLE is presently raising more and more attention and is becoming one of the leading technologies for both IoT-oriented and industrial scenarios”
The authors provide an in-depth introduction to SIG Bluetooth Mesh. (Note that an excellent higher level overview also very recently became available from InsightSIP). The research paper also mentions other Bluetooth mesh implementations such as the draft IETF Bluetooth Mesh for IPv6.
Applications such as smart city, industrial monitoring and smart agriculture are considered and factors such as interoperability and security are mentioned. Finally, the paper compares other protocols such as Thread, ZigBee and LoRaWAN.