UPS Shipping Update

We have been using UPS shipping for just over a month now and have just refined our shipping options based on past customer orders and our costs. UPS offer two main services, UPS Standard that goes by road and UPS Express that goes by air.

We have found that UPS Standard to some European countries is taking 5 to 6 business days which we can now improve on for some countries. For Italy, Spain, Austria, Finland, Greece, Denmark and Sweden we now always send by UPS Express (by air) for a similar cost as was the case for UPS Standard. This has a delivery time of 1 to 2 days to most business areas.

UPS Standard goes via the new London Hub that shows as ‘Stanford Le Hope, United Kingdom’ in the tracking. This is UPS’s largest single infrastructure investment outside of the United States. View the video:

The London Hub is 32,000-square metres in size and has a capacity to process up to 28,000 packages per hour. It’s part of UPS’s $2 billion infrastructure investment programme in Europe.

UPS Express gets to via East Midlands airport by the evening of the day it is picked up from us and shows as ‘Castle Donington, United Kingdom’ in the tracking.

UPS Freight Flight from East Midlands Airport/Castle Donington

Freight flights leave every evening to Europe and North America that are delivered in 1 to 2 working days to Europe and 2-3 days to N America.

View the shipping page for a summary of delivery costs and time scales.

INGICS Bluetooth Gateway MQTT Service Levels

The INGICS iGS01S (WiFi) and iGS02E (Ethernet) gateways support MQTT to send data to a server.

iGS01S Bluetooth LE WiFi Gateway

MQTT defines three levels of Quality of Service (QoS) that relate to whether requests are resent if not acknowledged:

  • 0 – The broker/client will deliver the message once, with no confirmation.
  • 1 – The broker/client will deliver the message at least once, with confirmation required.
  • 2 – The broker/client will deliver the message exactly once by using a four step handshake.

The INGICS gateways only support QoS level 0. This is because these gateways have lower memory and processing capability. They don’t have enough memory to queue unacknowledged requests required of other QoS levels. The extra processing would also significantly impact the performance and hence throughput.

If you need a higher MQTT service level then try the Minew G1 that supports QoS levels 0 and 1.

Lastest Issue of Wireless Q Available

Nordic, the manufacturer of the System on a Chip (SoC) in many beacons, has published the latest issue of Wireless Quarter Magazine. It showcases the many uses of Nordic SoCs.

This issue mentions three ‘smart’ products, a smart cricket ball, a smart luggage tag and a smart bike helmet that are effectively beacons or sensor beacons in different form factors.

The IoT will overtake smartphone centric products as Bluetooth LE tech’s main market by 2024

The World’s first dual Arm Cortex-M33 SoC, the new nRF5340 SoC, is also mentioned. This will allow for more CPU intensive applications such as TCP/IP networking and edge processing of data.

There’s also a feature on asset tracking and locating systems valued at $19 billion last year and expected to reach $128.75 billion by 2027, with a Annual Growth Rate (CAGR) of 24.5%.

The Sogo/MokoSmart VILOG car tracking system is featured and is pertinent as we are a distributor for MokoSmart beacons.

Comparison of Bluetooth LE Locating Methods

There’s research just published on A Comparison Analysis of BLE-Based Algorithms for Localization in Industrial Environments. The research compares trilateration, fingerprinting and a machine-learning based k-nearest neighbors regressor for determining the location from signals from multiple beacons.

Multi-layer perceptron (MLP) schematic model
Error box plots for the three fingerprinting algorithms with different beacon densities. Results for a fingerprint grid with one measurement every 0.5 m.

The results show fingerprinting is better than distance-based schemes in industrial environments due to the presence of large moving metal objects that shadow and reflect wireless signals. The three methods were found to provide similar localisation accuracy. The authors say the machine learning method is best due to less complexity and better adaptability. The machine learning method does not need regular calibration as is the case with fingerprinting.

Read about Determining Location Using Bluetooth Beacons

Low Power Bluetooth Advertising Chip Without SoC

Asahi Kasei Microdevices Corporation has announced the AK1595. As with the previously mentioned AK1594, it works without a System on a Chip and provides Bluetooth transmission using very low power.

Instead of setting the advertising via EEPROM programming like the AK1594, the AK1595 is controlled via UART or I2C making it suitable for variable data transmission scenarios.

We expect the AK1595 will be particularly useful for energy harvested applications.

Sensor Triggered Advertising

Most of our sensor beacons with accelerometers offer motion triggered broadcast. That is, they can be set up to advertise when the beacon is moving. This can be used for motion detection or, in some scenarios, as a mechanism to significantly conserve battery life.

Some beacons such as the Minew range with buttons can be set to only advertise when there’s a double press of the button. This can be used for SOS type scenarios.

The S1 temperature humidity beacons can also be set to advertise when the temperature or humidity goes above or below a value. This is useful for alarm type situations.

S1 Beacon

While triggered broadcast provides for these usecases and extends battery life, it should be remembered that because the beacons are not advertising all the time, there’s no way of knowing their location (in RTLS situations) or indeed if the beacon is working (e.g. the battery might be flat). Beacons such as the INGICS range advertise all the time and send different advertising when a button is pressed or the temperature/humidity changes. This allows for ‘I am still here’ functionality at the expense of shorter battery life.

Bluetooth in Aviation

Bluetooth beacons are increasingly being used in the aviation industry to track pallets, unit load devices (ULDs) and audit temperature, humidity and shock levels.

Cargo Airports & Airline Service magazine has an article on the Bluetooth Revolution where it mentions ULD provider Unilode’s use of Bluetooth tags. Unilode is equipping its 125,000 ULDs with Bluetooth readers. This will take over two years but 80% should be fitted out within 18 months.

The most significant development recently in ULDs is the development of Bluetooth Low Energy tracking devices.

The article mentions how Unilode has been exploring the use of RFID over last 25-30 years. It says Bluetooth provides the solution to RFIDs limits of range, infrastructure cost and interference with aircraft systems. Bluetooth additionally allows monitoring of ambient shipment conditions, temperature sensitive cargo and shock sensitive cargo.

The key benefit of Bluetooth is knowing where units are, all the time, rather than relying on scanned updates. It provides for better utilisation of assets. This makes transport of freight easier, smoother and more efficient.

Real-time monitoring of assets allows the client to immediately know when assets are behind schedule, being routed inappropriately, or in poor conditions.

Bluetooth not only provides a scaleable and affordable way of tracking pallets and unit load devices but can also provide for tracking the status of smaller critical packages such as pharma and and cosmetics goods.

Here at BeaconZone, we have seen beacons used more for airline temperature sensing rather than tracking. For example, iB003N-SHT beacons are used by Qatar Airways to monitor the temperature of pre-flight cargo holding areas.

New Bluetooth Range Extender

Nordic Semiconductor, the manufacturer of the System on a Chip (SoC) inside most beacons, has announced a new Bluetooth Range Extender the nRF21540.

It’s an electronic component to be used at the SoC output to amplify the signal prior to being sent to the antenna. We expect this to be included in some future long range beacon designs. However, note that it uses more current (115 mA at +20 dBm) so is less suitable for use in coin-cell based battery powered designs.

Our ultra long range beacons already use RF amplifiers but from different component manufacturers. For example the iB003N-PA uses a RFAXIS X2401C chip to achieve up to 300m range. The FSC-BP109 also uses an output amplifier to reach up to 1000m on Android and 4000m on iOS but this beacon requires USB power.