Bluetooth AoA Direction Finding

There are many scenarios that require accurate tracking of assets and people. Logistics can ensure efficient use of equipment and improve workflows. Manufacturing can locate valuable plant tools, parts and sub-assemblies, improve safety and enable efficient asset allocation. Healthcare can track high value equipment, monitor the location of medicines, save time searching for equipment and monitor vulnerable patients. Facilities can track valuable assets, monitor lone workers, check occupancy levels and automatically locate people or students for safety and evacuation.

New AoA direction finding brings sub-metre tracking to Bluetooth where the main alternative was previously expensive, proprietary ultra-wide band (UWB). AoA direction finding uses receivers, called locators, that have multiple antenna. The differences in phase of the signal arriving from a beacon to each antenna are used to determine the direction.

One locator can be used to determine the location or multiple locators can be used to triangulate a more accurate beacon position.

You can’t use just any beacon. It needs to send a Constant Tone Extension (CTE) for a long enough time to enable the receiver to switch between all the antennas.

Martin Woolley’s excellent Bluetooth Direction Finding Technical Overview provides a deeper explanation of the theory.

The calculation of data from the antennas to angles is called radiogoniometry. This can be performed by the the same microcontroller hardware that’s receiving the radio data, by a gateway or by a separate location engine on a local server or in the cloud. The problem with using the same microcontroller is that it is slow and doesn’t scale well to larger numbers of beacons. Also, it doesn’t know about other locators and so can’t do triangulation when multiple locators see a beacon.

There are many ways to implement the location engine using different radiogoniometry algorithms of different accuracy and computational complexity. The location engine should also filter the incoming data to mitigate the affects of multi-path reception, polarization, signal spread delays, jitter, and noise. It also needs to be performant, ideally using compiled rather than interpreted code, to support the maximum throughput and hence the maximum number of beacons. It should also also provide a streaming rather than polling API to pass data onto system and applications such as real time locating systems (RTLS).

Read about PrecisionRTLS™

New B10 Emergency Button Beacon

The new wearable, rechargeable Minew B10 beacon is now available.

This beacon works like a standard Minew beacon advertising up to 6 channels that can be iBeacon, Eddystone UID, Eddystone URL, Eddystone TLM, acceleration and device info. The button can be set to specific advertising for one, two of three presses. There’s a flashing led and vibration when pressed. There’s also a 6-axis accelerometer that can be used to analyse movement or for motion triggered broadcast.

An additional lanyard holder and lanyard are provided
The beacon is charged using a magnetic cable

A full charge lasts up 60 days per charge depending on settings.

View all Minew products

New P1 Plus Industrial Beacon

We have the new Minew P1 Plus in stock. It’s a sensor beacon designed for rough environments and is IP68 waterproof, IK09 shockproof and has a wider than normal temperature rating due to use of the included industrial ER14250H lithium battery.

This beacon has temperature and accelerometer sensors. It’s turned on and off via a magnetic switch. As with other Minew beacons it advertises up to 6 channels that can be iBeacon, Eddystone UID, Eddystone URL, Eddystone TLM and device info. 

View all beacons

What’s the Smallest iBeacon?

Small beacons are sometimes needed so that they remain unobtrusive or need to be embedded into larger devices. The smallest, cased, beacons we supply are:

The compromise with small beacons is that they have CR2032 batteries that don’t last as long as larger battery beacons. If the beacons won’t be moving and you have access to USB power, consider using USB beacons that are also small.

No Firmware NanoBeacon SoC

Almost all beacons are slight derivations of a few standard circuit designs and firmware provided by Texas Instruments, Dialog and Nordic who produce the System On a Chip (SoC) inside beacons. The SoCs are general purpose devices that can do a lot more than just advertise as beacons but the beacon manufacturers only provide fixed firmware that performs just this one function, occasionally with additional sensing.

The use of firmware-based SoCs for beacons means there’s a lot of hardware and software (SDKs) that goes into creating a beacon. Much of this isn’t needed if the chip is designed for the single purpose of being a beacon. We previously mentioned the AK1594 but have yet to see any designs making use of this device.

NanoBeacon IN100 SoC

The InPlay NanoBeacon IN100 is a newer device that has recently received Bluetooth 5.3 certification. It’s small (DFN8 is 2.5 x 2.5mm), inexpensive (designs using it are expected to be <$1) and no firmware or SDK is required.

The IN100 uses only 650nA when used with 1 minute advertising intervals that means it will last a very long time under battery power. The range can be up to several hundred meters. It’s configured using a programmer board connected by USB. A smartphone app is used for configuration. InPlay have a video demonstrating configuration:

We expect this SoC will end up being embedded in products rather than being used stand-alone in beacons because beacon manufacturers are already heavily invested into firmware-based beacons.

Tracking Bluetooth Devices Without Using MAC Addresses

We often get asked if it’s possible to track smartphones using Bluetooth. For example, a retailer might want to know how long someone stays in their store and whether they visit again.

While iOS devices advertise Bluetooth continuity messages it’s not possible to track iOS devices using their Bluetooth MAC address because the address changes over time in order to defeat such tracking. However, as previously mentioned, Bluetooth MAC randomisation can be defeated. Android devices don’t usually advertise but some do if Covid tracking is on.

There’s a new paper by researchers at UC San Diego on Evaluating Physical-Layer BLE Location Tracking Attacks on Mobile Devices (PDF). It looks into Bluetooth physical-layer patterns to track a variety of device types.

A tool has been created to automate discovery of imperfections in signal modulation.

These imperfections are caused by manufacturing variations in the transmitter hardware.

Some, but not all, devices have unique fingerprints and can be tracked.

Special Issue Bluetooth Low Energy: Advances and Applications

The MDPI has a special issue of Sensors Journal with a collection of papers related to Bluetooth LE.

BLE applications can be found in a wide range of domains, e.g., smart home, smart cities, smart health, smart agriculture, or Industry 4.0. BLE is enabling the interaction between humans and smart objects, as well as between smart objects themselves. BLE has also been leveraged for innovative location-based applications, opportunistic data collection and crowd-sensing.

All the papers are available free of charge under open access:

Detecting Proximity with Bluetooth Low Energy Beacons for Cultural Heritage

Optimizing the Bluetooth Low Energy Service Discovery Process

Empirical Study of a Room-Level Localization System Based on Bluetooth Low Energy Beacons

Bluetooth Low Energy Interference Awareness Scheme and Improved Channel Selection Algorithm for Connection Robustness

Obstruction-Aware Signal-Loss-Tolerant Indoor Positioning Using Bluetooth Low Energy

Efficient Communication Scheme for Bluetooth Low Energy in Large Scale Applications

Experimental Evaluation of 6BLEMesh: IPv6-Based BLE Mesh Networks

Energy Modeling of Neighbor Discovery in Bluetooth Low Energy Networks

Bluetooth 5.1: An Analysis of Direction Finding Capability for High-Precision Location Services

Nordic Semiconductor Wireless Quarter

Nordic Semiconductor, the manufacturer of the System on a Chip (SoC) in many beacons, has published the latest online issue of Wireless Quarter Magazine. It showcases the many uses of Nordic SoCs.

The latest issue of the magazine highlights the use of the SoC in the following Bluetooth solutions:

  • Continuous glucose monitoring system for diabetes
  • Metered dose inhalers (MDIs) for asthma
  • Smart liquid heater
  • A musician’s playing monitor timer
  • Chipolo Bluetooth LE tracker

It’s mentioned that hospitals are struggling to manage IoT:

13 percent of hospitals have no inventory of their Internet-connected devices or any way of knowing how many connected medical devices are deployed in their facility… costing their facilities between $21.5k and $45.7k an hour

There’s also an article ‘Dog Gone’ showing wearables are rapidly being worn by animals as owners want to ensure their pets fitness, health and security.

The global pet technology market, which accounted for over $5.5 billion in 2020, is set to grow at 22 percent CAGR from 2021 to 2027 when it will be worth over $20 billion

Read Nordic Semiconductor Wireless Quarter

Detecting Proximity Using Bluetooth Beacons in Museums

There’s new research by the Institute of Information Science and Technologies, Pisa, Italy on Detecting Proximity with Bluetooth Low Energy Beacons for Cultural Heritage. The paper starts by describing alternative technologies including Ultra-wideband (UWB), Near Field Communication (NFC) and vision.

The RE.S.I.STO project allows media on the medieval town of Pisa to be accessible via smartphones and tablets. The system is implemented using the React Native Javascript Framework to allow cross-platform aps to be created on iOS and Android.

Beacons are attached to exhibits and the paper compares two proximity detection algorithms, a ‘Distance-based Proximity Technique’ and a ‘Threshold-based Proximity Technique’. The paper describes stress, stability and calibration testing of the system.

RSSI time series of 5 tags

The researchers found a strong variation of RSSI value for different tags that they say is caused by the varying channel (frequency) used by Bluetooth LE as well as environmental issues such as obstacles, fading and signal reflections.

The system was able to successfully detect the correct artwork with an accuracy up 95% using the Distance-based Proximity Technique.

Read about Determining Location Using Bluetooth Beacons

Bluetooth (BLE) vs Ultra-Wideband (UWB) for Locating

We previously mentioned how cost, battery life and second sourcing are the main advantages of Bluetooth over Ultra-Wideband (UWB). An additional, rarely mentioned, advantage is scalability.

Servers that process Bluetooth or Ultra-Wideband support a particular maximum throughout. The rate at which updates reach systems depends on the number of assets, how often they report and the area covered (number of gateways/locators). Each update needs to be processed and compared with very recent updates from other gateways/locators to determine an asset’s position.

For Bluetooth, updates tend to be of the order of 2 to 10 seconds but in some scenarios can be 30 seconds or more for stock checking where assets rarely move. Motion triggered beacons can be used to provide variable update periods depending on an asset’s movement patterns. This allows Bluetooth to support high 10s of thousands of assets without overloading the server.

For Ultra-Wideband, refresh rates tend to be of the order of hundreds of milliseconds (ms) thus stressing the system with more updates/sec. This is why most Ultra-Wideband systems support of the order of single digit thousands of assets and/or smaller areas. More frequent advertising is also the reason why the tags use a lot of battery power.

How does all this change with the new Bluetooth 5.1 direction finding standard? The standard was published in January 2019 but solutions have been slow to come to the market. The products that have so far appeared all have shortcomings that mean we can’t yet recommend them to our customers. Aside from this, in evaluating these products we are seeing compromises compared to traditional Bluetooth locating using received signal strength (RSSI).

Bluetooth 5.1 direction finding needs more complex hardware that, at least in current implementations, are reporting much more often. The server has to do complex processing to convert phase differences to angles and angles to positions thus supporting fewer updates/sec. Bluetooth direction finding is looking more like UWB in that cost, scalability and battery life are sacrificed for increased accuracy. Direction finding locators are currently x6 to x10 more costly than existing Bluetooth/WiFi gateways. Beacon battery life is reduced due to the more frequent and longer advertising. We are seeing Bluetooth 5.1 direction finding being somewhere between traditional Bluetooth RSSI-based locating and Ultra-Wideband in terms of flexibility vs accuracy.

Despite these intrinsic compromises, Bluetooth direction finding is set to provide strong competition to UWB for high accuracy applications. We are already seeing UWB providers seeking to diversify into Bluetooth to provide lower cost, longer battery life and greater scalability.