Nordic Semiconductor Wireless Q Magazine

Nordic Semiconductor, the manufacturer of the System on a Chip (SoC) in the majority of beacons, has published the latest online issue of Wireless Quarter Magazine. It showcases the many uses of Nordic SoCs.


This issue of the magazine highlights the use of Nordic SoCs in the following Bluetooth solutions:

  • Wearables providing seniors’ healthcare metrics
  • The Galaxy SmartTag
  • TraceTag and YardTag smart tags for livestock tracking
  • Connected rowing machines
  • A GPS bike computer

The magazine leads with a description of a new SoC the nRF7002 for Wi-Fi 6 IoT applications. There’s also a useful article on Amazon Sidewalk that allows devices to work better indoors and extend reach beyond the home. An in-depth article, ‘How the IoT Can Help Save the World’, explains how IoT is helping countries, communities and companies meet their green responsibilities. There are also two further articles on IoT in warehousing and the use of devices for health and assigned for seniors.

Bluetooth Low Energy Throughput

There’s new research by Institute of Electronics and Computer Science, Universite Grenoble Alpes, France on Bluetooth Low Energy Throughput in Densely Deployed Radio Environment (PDF). It looks into coexistence issues when Bluetooth is used in a crowded 2.4GHz frequency band where other devices such as Classic Bluetooth, WiFi, Zigbee and microwave ovens might also be operating.

The paper starts with a theoretical discussion of the throughput of Bluetooth LE.


Experiments used ten Bluetooth nodes to measure Bluetooth application throughput using various connection parameters and different interference sources. Two WiFi routers were used to evaluate the impact of WiFi on the BLE throughput.


The researchers found:

The more Bluetooth devices are working simultaneously, the more drastically Bluetooth throughput is decreasing… The Bluetooth co-interference causes throughput decrease for longer connection intervals. This behaviour could be explained by collisions in data transfer channel.

Also:

The effect of WiFi interference does not depend on the BLE connection interval. In this study, WiFi activity reduced BLE throughput approximately by 30% regardless of the connection interval.

These tests used Bluetooth GATT to form connection between devices. Some applications of Bluetooth LE, such as the use of beacons and AoA direction finding, don’t use GATT other than for initial setup. GATT implies connection between devices while beacons and the sole use of advertising and listening, rather than connection, is a different form of communication not covered by this paper. We have a post on Managing Bluetooth LE Advertising Congestion and Fixing Poor Bluetooth Beacon Radio Signals if you wish to explore this topic in more detail.

Study into Monitoring Museum Exhibition Visitors

There’s recent research from Brno University of Technology and National Museum – Natural History Museum, Prague, Czech Republic on Monitoring visitors using wireless technologies (pdf) in which BeaconZone is referenced.

The paper looks into the historical and existing technologies such as WiFi, Bluetooth, ZigBee, Ultra-Wideband and RFID for tracking visitors.

The authors propose a new solution combining existing technologies with heat maps from camera images.

Analysing visitor behaviour, museums can identify popular and unpopular areas and make adjustments accordingly, such as adding interactive elements to specific exhibits. Visitor behaviour also helps museums make informed decisions about marketing and promotions. Tracking visitor movements can also help identify and mitigate potential security risks in real time.

Sensor Beacons List Updated

We offer a range of sensor beacons but what each beacon actually senses or detects is buried deep in the respective beacon descriptions.

As we have recently added new sensor beacons, we have updated our downloadable pdf showing what each beacon can detect.

If you want to know how you might use these beacons, take a look at our articles on Beacon Proximity and Sensing for the Internet of Things (IoT) , Using Bluetooth LE and Using Bluetooth LE Sensors.

Beacon MAC Addresses

The beacon MAC address is the Bluetooth LE MAC address, or Media Access Control address, a 48-bit identifier that uniquely identifies a Bluetooth device. The address is fixed address at time of manufacture and can’t be changed.

To find the Bluetooth MAC address of a beacon you use the configuration app that is supplied with the beacon to scan for the beacon. Alternatively, on Android, you can use nRF Connect. The MAC address is also sometimes stamped on the beacon case or an an attached sticker.

The MAC address can be used to uniquely identify devices. However, if you are reading from smartphone apps, it’s more usual to use the unique iBeacon id that is contained in beacon advertising because this can be detected by smartphone OS APIs. The MAC address tends to be used more in real time locating systems (RTLS) as a unique id that’s independent of the type of advertising.

Many newcomers make the mistake of trying to use, and set, the Bluetooth name as a unique id. This isn’t reliable and instead you should use the MAC address or iBeacon id.

Smart Business

In today’s competitive business environment, companies are constantly seeking ways to improve their operations, increase their efficiency and reduce costs. One way to achieve these goals is by implementing smart sensing technology to save energy costs and improve business processes.

Smart sensing technology allows businesses to monitor their operations in real-time, enabling them to identify areas where energy can be saved and process improvements can be made. By using sensors to measure factors such as temperature, humidity, air pressure, light level, and movement, businesses can gain valuable insights into their operations and make informed decisions to improve efficiency.

One of the key advantages of smart sensing technology is the ability to save energy costs. By using sensors to monitor energy usage, businesses can identify areas where energy is being wasted and take steps to reduce consumption. For example, by monitoring temperature levels, a business can adjust heating and cooling systems to maintain optimal levels while minimizing energy usage. This can lead to significant cost savings over time, as well as a more environmentally friendly business.

In addition to saving energy costs, smart sensing technology also helps businesses improve their processes. By monitoring operations in real-time, businesses can identify bottlenecks and inefficiencies, and take steps to improve them. For example, by using sensors to monitor the movement of goods within a warehouse, a business can identify areas where processes can be streamlined, reducing the time and effort required to move goods and improving overall efficiency.

Starting small with low-cost sensors in areas where the most significant gains can be made is a smart approach to implementing smart sensing technology. Bluetooth beacons are an example of such sensors that can detect movement (accelerometer), movement (started/stopped moving), button press, temperature, humidity, air pressure, light level, open/closed (magnetic hall effect), proximity (PIR), proximity (cm range), fall detection, smoke, natural gas, and water leak. These beacons can be placed in strategic locations to monitor and collect data about operations, which can then be used to make informed decisions.

Bluetooth gateways detect the beacons and send data for subsequent processing. Starting simple using simple server-side scripts and triggered events can be an effective way to begin implementing smart sensing technology. Avoiding SAAS and subscription-based systems, instead preferring simple stand-alone solutions can help keep costs down and ensure that businesses have financial control over these innovations.

Implementing smart sensing technology provides numerous benefits for businesses, including cost savings, improved efficiency, and enhanced process control. While these technologies are sometimes labelled as IoT or Industry 4.0, it’s best to ignore the hype and instead concentrate on practical matters. By starting small and using low-cost sensors in strategic locations, businesses can gain valuable insights into their operations and make informed decisions to improve their processes and reduce costs.

Read about Consultancy

Large Scale Bluetooth Mesh Testing

Nordic Semiconductor, the manufacturer of the SoC chip in most beacons, has a new blog post on Large scale Bluetooth mesh testing.


Tests were conducted in Nordic’s office in Trondheim and focussed on measuring reliability and latency. The results show that it’s easy to get 100% reliability for unacknowledged messages. Regarding latency and reliability, unacknowledged messages perform better than acknowledged messages within the used testing constraints.

Decoding iBeacon Advertising Using Javascript

iBeacon advertising consists of a UUID, major, minor and measured power. To decode the advertising using Javascript:

function decodeIBeacon(packet) {
  var uuid = packet.substring(4, 40);
  var major = parseInt(packet.substring(40, 44), 16);
  var minor = parseInt(packet.substring(44, 48), 16);
  var power = parseInt(packet.substring(48, 50), 16) - 256;

  var beacon = {
    uuid: uuid,
    major: major,
    minor: minor,
    power: power
  };

  return beacon;
}

This function takes a hexadecimal string representation of an iBeacon advertisement packet as input and decodes it into an object that contains the UUID, major and minor values and the measured power (measured in dBm) of the beacon.

To use this function, you need to extract the iBeacon advertisement packet from the Bluetooth Low Energy advertisement data received by the BLE scanning device. The iBeacon advertisement packet typically starts with a pattern similar to the following: 02 01 06 1a ff 4c 00 02 15. You can extract the iBeacon part by searching for these bytes in the advertisement data and then take the next 20 bytes as the packet.

View iBeacons

Subscription-free Bluetooth Gateways

Bluetooth to WiFi gateways allow Bluetooth devices to communicate with WiFi networks and onward to local or Internet servers. A gateway converts the Bluetooth data into data that’s received at the server. This data usually includes the gateway MAC address, the beacon MAC address, the received signal strength (RSSI) and the raw beacon payload that’s usually iBeacon but can alternatively contain sensor information.


Some commercial gateways require financial subscriptions and use of a specific Internet platform. All gateways BeaconZone supply have open HTTP and MQTT data format allowing use of your own local or remote server. This is much more cost-effective and eliminates the need for ongoing fees. Another advantage of a gateway that doesn’t require a subscription is that it offers greater privacy and security. Platforms may collect and store user data that can raise concerns about privacy and security.

Not using a subscription-based platform means you are not dependent on a provider’s technical issues. You also become isolated from any existential business provider issues that might cause large increases in pricing or the service disappearing because the company is no longer in business.

Controlling your own server ultimately provides more options for customisation and scalability, allowing you to meet specific requirements that are unique to your business processes.